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S U M M A R Y  
The subject of this paper is the problem of acoustic diffraction by a perfectly rigid annular disk. The method of 
solution rests on formulating the problem in terms of an integral equation which embodies the steady state wave 
equation as well as the boundary conditions. This Fredholm integral equation of the first kind is converted into 
four simultaneous integral equations of the second kind by using Williams' integral equation technique. These four 
integral equations are subsequently solved by the standard iterative procedure when the frequency of the incident 
wave is low and the inner radius of the annulus is small. 

1. Introduction 

Recently a great interest has been shown in three-part boundary-value problems in mathematical 
physics and theoretical mechanics [-1-12]. In the field of diffraction, the problem of acoustic 
diffraction by a soft annular disk has been solved by Thomas [10], while the corresponding 
problem of electromagnetic diffraction by a perfectly conducting annular disk has been solved 
by the present authors [12]. The problem of acoustic diffraction by a perfectly rigid annular 
disk is also of interest and forms the subject of the present paper. 

The method of solution rests on formulating the problem in terms of an integral equation 
which embodies the steady state wave equation as welt as the boundary conditions. This 
integral equation, which is a Fredholm integral equation of the first kind, is converted into 
four simultaneous integral equations of the second kind by using Williams' integral equation 
technique [8] as illustrated by Thomas [10]. These four integral equations are subsequently 
solved by the standard iterative procedure when the frequency of the incident wave is low and 
the inner radius of the annulus is small. 

The formulation of the problem as well as the solution is given for a general acoustic wave. 
A detailed discussion is then presented for the special case when the incident wave is an axially 
symmetric plane wave. The values of the far field amplitude as well as the scattering cross- 
section are presented. A complete study is made both for inner as well as outer edge conditions. 
The results so obtained are subsequently verified for the special case mentioned above. When the 
inner radius of the annular disk tends to zero, the results of this paper reduce to the known 
results for a perfectly rigid circular disk. 

2. Formulation of  the Problem 

We take cylindrical polar coordinates (p, ~0, z), with z-axis along the axis of the annular disk 
such that the annular disk is defined by 

z = 0 ,  b<p<a,  all ~0. 

Let the time dependence be exp ( -  kot) and let the time-independent part of the velocity poten- 
tials of the incident and diffracted fields be uo(p, ~o, z) and q~(p, (p, z). Both these functions 
satisfy the Helmholtz equation. The total velocity potential u is 

u (p, ~0, z)= u0 (p, ~0, z)+ �9 (p, ~0, z), 

and we have to solve the following boundary-value problem 
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(v 2 + k 2) m = 0,  (1) 

8~ 8Uo 
- on z = 0 ,  b<_<_p<=a, (2) 

8z 8z 

and ~ -  are continuous across z = 0, 0 < p < b, p > a ,  (3) 

O.o (p, e, z)],=o - 
& 

where 

where k =  co/c is the wave number and c is the speed of the wave propagation. In addition 
~b (p, q), z) satisfies the Sommerfeld radiation condition as well as appropriate edge conditions. 

The Fredholm integral equation of the first kind which embodies the boundary value problem 
(1) to (3)is 

l f l  f i ~ t l ( r l ) [  ~2 eikO--~-)j dq)tdt (b<=p<=a) (4) 
4re ~ zI=O ' ' 

and 

z=0 

ri = (t, ~0 l, zl) is a point on the annulus, 

R = {p2 + t 2 _ 2pt cos (q~ - (Pl)+ ( z -  zi)2} ~ , 

[ l ( r i ) ]= ,=  o = { [~ ( t ,  (Pi, z l ) ] = , = o - -  [~ ( t ,  (p,, z i ) ]=,=o+} , 

is the jump in the potential @ across the annulus. We now assume that Uo (p, cp, z) has the form 
U(o m) (p, z) cos mq) with m an arbitrary positive integer or zero. More general excitation can be 
formed from a superposition of such modes. By writing 

I(t, q)l, 0) = 2g(m)(t) cos m(oi, 

the equation (4) becomes 

V (P' z) ] 
cos mqo L ~-z -J~= o 2re b Jo LX2.=o cos m~oidq~ldt , 

g = O  

(b_-__p<a). (5) 

Following Williams [13], the integral equation (5) can be reduced to 

k 7z  ~=o P OP ==o 

where (b < p < a). (6) 

f 2~ exp {ik(p 2 + t 2 - 2pt cos 0 + z2) ~} 
K (~) (t, p) = o 2rc(p 2 + t 2 - 2 p t  cos O+z2) ~ cos mOdO 

= I ~ P e- 'k l  J~(pp)Jm(pt)dP7 ' (7) 

(p2_ k2)~ p > k,  

Y =  - i ( k2 -p2)  ~ k ~ p ,  

and J,, is Bessel function of order m. 
Next step is to use the formulae 

( ~2 1 0  m2 ) 
~p2 + Jm(PP) = p 8p p-~ __ p2 Jm (PP), 

1 d 
[x  m+ ' Jm+ l (px)] 

J,. (px) - P xm + 1 dx 

Journal of Engineering Math., Vol. 4 (1970) 219-228 



Acoustic diffraction by a rigid annular disk 221 

and the edge conditions g (") (a)= g (")(b) = 0. Then from (6) and (7) we get, after integrating by 
parts and putting z = 0, the result 

tm+l d 1 p dt [t-mg(")(t)]Jm+i(PP)J"+i(pt)dpdt' 

(b=p__<a). (8) 

and introducing two functions h(a ") (p) and h(z m) (p) such that 

h(1,,) (p) = ~ a~,,) pr, (0__< p < a), 
r = 0  

and 
-1 

h(z m)(p) = E a~ m) J ,  (b < p< oo). 
r =  - -  c o  

Thus equation (11) splits into the following two equations: 

f f t~+lf(lm)(t) J~+l(pp)Ym+l(pt)dpdt 
0 0 

= h(m)(P)-  f ~  tm+lf(lm)(t)i~(~--1)Jm+l(pp)Jm+t(pt)dpdt, 

This method rests on setting 

1 t'~tm+lu(o'~)'(t)dt= ~ a~m)pr ( b < p < a )  (12) ~rn+ I ~ ~ ' la r = - o o  

x Jm +1 (PP) Jm +, (pt) dp dt, 

(0< p <  a) ,  (15) 

Journal of Engineering Math., Vol. 4 (1970) 219-228 

(b<__ p<__ a) . (11) 

(13) 

(14) 

Now set 

d 
f(,.)(p) = d P  [p-.,  g(,,O(p)] , bN pN a,  (9) 

in (8) and integrate to get the integral equation 

tin+ 1 

_ P"+I 1 f~  tin+ lug")'(t)dt , (b<= p <  a) , (10) 

where u(o "y (p) denotes ( ~-z z)}~= o" 

This is an integral equation of the first kind in unknown function f(,,/(t). Our aim is to convert 
it to a few simultaneous integral equations of the second kind so that we can use the iteration 
scheme. 

By writing 

( ' )  ~- Jm +l (PP) d,, +1 (pt) = J,, +l (PP) Jm+l (pt) + P - 1 Jm +i (PP) Jm+i (pt), 
P 

in the equation (10), we have 

iab f coO tm+lf(m)(t)Jm+l(PP)Jm+l(pt)dpdt 

1 P a 
-Dr~+llotm+lu(om)'( t )dt- lbi2tm+if(ra)( t ) (~ - l ) x  
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and fo  tm+lf(2")(t) f~  J,.+l(pp)J,.+l(pt)dpdt 

= h~2"~ f~ t"+lf(z")(t)f] ( 7  1) J,,+l(pp)J~+l(pt)dpdt , 

where 

l 
O, O<__p<b, 

f(am)(p)+f(zm)(p) = f(m)(p), b< p< a,  (17) 
(0, a< p< oo . 

Following Williams [18] and others [10-12], the equations (15) and (16) are converted into 
the following four simultaneous Fredholm integral equations of the second kind" 

(m+ 1)! 
T(")(P) = l~2m)(P) + pro+, (r(m+~))(rc)~ • 

i b u~+2 T~)(u)~FI(�89 m+ 1; m+~;  u~/p~)du 
x o ( p 2 - u  ~) ' (a< p< 0 0 ) ,  (18) 

p"+2 (m+ 1)! 
r(~m)(P) = I(~)(P) + ( r ( m + ~ ) ) ~  ~ x 

I~ (0<p< b) (19) 
u-m- l  T(m)(u)2Fl(�89 m §  l ; m§  p2/u2) du 

x ~ ( u , _ p 2 )  , , 

f f Si ") (p) + Si ") (v) I3."~ ) (v, p) dv = Ci ") (p) + T~ ") (v) 13."] ) (v, p) dr, (0 < p < a), (20) 
0 a 

f f S(2")(p) + SCz")(v)13?z')(v, p)dv = C~m)(p) + ~")(v)13,'~)(v, p)dv, (b< p< oo), (21) 
b 0 

where [S(lm)(o), 0 < p < a ,  
+1 ~ ~ f~')(t)dt p,, 

J P (t2-p2)} ( -T~  '(p), a < p < o o ,  (22) 

1 (P t 2m+ 2f(m)(t)dt I - T(m)(P)' O< p< b,  

p.,+lJo (pZ_t2), = ]  (23) 
( S(z ")(p), b < p < oo, - 

2 fP t 2m+2 d f ~ u-'Si=)(u)dudt 
l]")(P) - 7tP "+1 J o (~Z~t2) ~ dt _, (u2-tz)  ~ ' (0< p< b), (24) 

2p m+l I ~176 t -2m-2 d i t u"+2S~='(u)dudt (a< p< oo) (25) 
l(2")(P)- re p (t2-P2) ~ -  b (t2-u2) ~ ' 

?) (~, p) = ~ ~.- 1)(~, p) = (~p)~ f ~ (~ - p) & (PP) & dp ,  (26) + + 
J 0 

(b< p <  oo), (16) 

1 d fP t m + 2 h(,,.)(t) dt (27) 
C(a"~ - p m + ,  ~p o (p2-t2)+ ' 

c~m)(p) = _ p . + l  d t ~ t-~h~')(t)dt 
aTp. (t2-p2) ~ 
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and zF~ is a hypergeometric function. 
Inverting the integral equations (22) and (23) we obtain 

f ( m ) ( p )  = f~,,O(p)+f~2")(p ) _  rc p (u2--p2) ~ 

- -  a (U2 _ p2)k  [ + 7cp2"+ 2 do (p2_ u2)~ + 

( p U m+2 S(2 m) (u)du -] 
+)b ~ J '  (b<__p<a). (29) 

If we can solve the four equations (18-21) for the unknown functions S] ") (p), S(2 ") (p), T~ ") (p) 
and T2 (")(p), then we can determine the value of g (") (p) by using the equations (9) and (29). 
With that aim in view, we first simplify the kernels/2T ) and/27 ). Indeed, by using the complex 
integration method introduced by Noble [14], we have 

. 1 k i -t(vp) ~ ( (k2-p  2) H~(pp)J"+~(pv)dp, (p >=v), 
' JO 

lJ"])(v' P)= I2~-l)(v' P) = -i(vp) ~ f k (k2-p2)~Jm+~(pp)H~l)+~(pv)dp, (v ~p) ,  (30) 
JO 

where H (1) is Hankel function of the first kind. The form (30) of the kernels/iT ) and/27) is useful 
when k is small as is the case in the present analysis. 

3. Far Field Ampliiude and Scattering Cross-Section 

In terms of spherical polar coordinates (r, O, q~): 

p = r s i n O ,  z = r c o s O ,  

the far field amplitude is defined as 
eikr 

r O, cp)= r qo, z)= -A(O, q)) - -  + O(r- 2), as r ~ o e .  
r 

Comparing it with the integral representation formula for r we easily calculate A (0, q)) to be 

A(O, q))= ~ A(")(O) cos mgo, (31) 
"=0  

where 
1 

A(")(O) = (i)-"-l(k cos 0)~ " tgt")(t)J,.(kt sin O)dt 
J b 

f i { t  "+ = - ( i ) - " -1  cot 0 1J,,+l(kt sin O)}f(")(t)dt, 

where we have used the edge conditions g~")(a)= g (") (b)= 0. Now we use the identities 

o 

(32) 

and the relations (22), (23) in the equation (32), and get 

(33) 
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( 2~ ~ {flo s(lm)(av)v ~ J,.+r sin 0)dr A ("~ (0) = - (i)- " -1  a cos 0 \ ~ / /  

- T~m)(av)v§ sin O)dv 
1 

f 1 +2 ~ S(2m)(bv)v~ Jm+~(vfi sin O)dv , (34) 
1 

where c~ = ka, fi = kb and 2 = b/a. 
The scattering cross-section a is defined as the ratio between the average rate at which 

the acoustic energy is scattered by the annular disk and the average rate at which the acoustic 
energy of the incident wave crosses a unit area normal to its direction of propagation. For the 
case of a general plane wave 

Uo(p, (P, z )=  exp {ik(z cos Oo+r sin 0o cos (?)}, 

for 0__< 0o < re/2, where 0o is the angle of incidence, the value of the scattering cross section 
is [10] 

where e , ,=2-~o, , ,  and 6~j is the Kronecker delta. 

4. Edge Conditions 

One readily deduces from the equations (17), (22) and (23) that 

2 f 
~ ~ (u 2-p2)~ I + ~ p ~ m + ' d p  - o (p-~-.~)~ 

f ~ u m+ 2 s~''(u)au] + b (pZ_uZ)~ j = 0 ,  ( a < p <  oo). (36) 

If the function T~ ") (p) is extended over the range b < p N a, the equation (36) will also hold for 
the range b <  p <  a. But then the equation (29) yields 

2 d Iiiu-m(s~)(u)+T(lm)(u))du ] 
f(m)(p)_ ~ dp u2_p2)  } , (b< p <  a). (37) 

Similarly 

2 dp[f ~ u-"x(am)(u)du f ;  u-"~T(~m)(u)du ] 
~ (u ~ -  p~)~ (.~ - p~)~ 

2 d I f p u"+2T~m)(u)du] 
+ n p  2m+2 dp - o ~ u ~ -  3 = 0 ,  (0=<p<b) ,  (38) 

and it will also hold for b =< p < a if the function T2 ~ (p) is extended over the range b___< p < a. 
Then the relation (29) will become 

2 d[fPu"+2{S(zm)(u)+T(2m)(u)}du ] 
f(m)(p) _ rtP 2m+2 dpp b (P2-U2) ~ , (b< p <  a). (39) 

The equations (37) and (39) yield, after some manipulations, the interesting results: 

f(m)(p)= 2 [S~")(a)+T~")(a) _p2)}}] as (40) 
~a ~ L ( a 2 - p 2 7  + O{ (a ~ , p-~a , 
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and 

2 V s(2m)(b)+ T(2m)(b) 1 f(m)(p) = ~-~b  - ( ~ - b ~  + O{(p2-b2) -~} as p-+b. (41) 

The relations (40) and (41) constitute the edge conditions for the rigid annular disk. When 
2--,0, the relations (40) and (41) reduce to the known results for the rigid circular disk. 

5. Special Case of an Axially Symmetric Plane Wave 

Details of the above analysis can be presented when the incident wave is a plane wave travelling 
in the direction of the positive z-axis, i.e. 

Uo(p, o,z)=e% (p, z)  = 0, m____l. 

Then it follows from the relations (12-14) that 

h? ) (p) = ikp/2, h~z ~ (p) = O . 

For this special case the simultaneous system of governing integral equations are the equations 
(18-21) with m set equal to zero: 

1 ~ 22p 1 log ~ p ~ u / J  du, (1 < p <  oo) (42) T~ ~ (ap) = I~ ~ (ap) + -~ T(2 ~ (bu) [ (p2 _ 22 u 2) u ' 

l 
T~~ = l?)(bp) + ~ T(~ ((uZ 22p2) - log \ u - A p / J  du, (0< p <  1), (43) 

S(~ = iep+a 1 T(l~176 ap )dv -a  S(l~176 ap)dv, (0< p <  1), (44) 

S(2~ = b T(z~176 bp)dv -b  S(2~176 bp)dv, (1< p,< oe), (45) 
o 1 

where 2 =  b/a. Let us collect the small perturbation parameters occurring in this analysis: 

= ka, f i= kb, 2=  b/a= fl/e 

and we shall assume in the sequel that a = 0(2) and that fl = a 2 =  O(a2). Fortunately, the kernels 
of the equations (42-45) tend to zero as 2, ~, and fl tend to zero, i.e. when the frequency of the 
incident wave is low and when the inner radius of the annular disk is small. We can easily give 
the expansions of these kernels in terms of these parameters, since the kernels of all these 
equations are given in terms of elementary functions. Indeed, from (30) we have 

I--i(vp)~ f k (k2-p2)~ H(~l)(pp)J~(pv)dp , p >=v , 
' p)  = 0 

I -i(vp)~ i k o (k2-p2)~ J~(pp)H~t)(Pv)dP' v >P,  

k2v 2ipvk 3 (v3 + 3p2v)k 4 2i(p3v+ pv3)k s (vS + lOp2v3 + 5p'~ v)k 6 

2 3 ~  + 48 + 45rc - 1920 

2i (3pv 5 + lOp 3 v 3 + 3p 5 v) k 7 
- 4725~ + O(kS), p >v ,  

= k2p 2ipvk 3 (p3+3pv2)k 4 2i(pv3+p3v)k 5 , (pS+lOvZp3+5v4p)k 6 

2 -  3 ~  + 48 + 45n - 1920 

2i(3pv s + lOp 3 v 3 + 3p s v) k 7 
- 4725~z + O(k8), v > p .  (46) 
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Similarly 

f 

p) = ]_ _ _  

Let us set 

k 2 v 2 
- - -  + O ( k 3 ) ,  p > v 

6p 

k 2 p2 
+ O(k3), v => p, (47) 

6v 

S(l~ = X[~ + W~~ , 

in the equation (44) which can then be split into the following two equations 

X~~ ~10 X~~176 ap)dv (0< p< 1), (48) 

and 

~ T(l~176 t i  l~~176 ( 0 < p <  1). (49) 

The equation (48) is the integral equation for the problem of diffraction of an axially symmetric 
acoustic plane wave by a perfectly rigid disk as solved by Williams [13]. However, Williams did 
not split the kernel as we have done above and therefore his analysis cannot be used. But this 
equation is a simple Fredholm integral equation of the second kind and can be readily solved 
by iteration to obtain approximate value of X~ ~ 

X~ o)(ap) = ie [cl (e)p + c3 (c~) p3 + c5 (~)p5 + c7 (~) p7 + 0(c(8)], (50) 

where 

0~ 2 2ic~ 3 7e 4 41i~ s ( 11 4 "~e6 6301ie7 
cl(c~) = 1 + ~- + ~ + ~-~ + ~ + \38-40 81x2/ + 352800~' 

~2 ~4 i~5 ~6 101i~7 
C3(e) -- 12 32 30n 256 8400n ' 

~4 ~6 i~7 
C5(~) = ~ + ~-~ + 672----~' 

o~ 6 
c7(c~) - 16128" 

Having found X~ ~ we can calculate the other functions in the following sequence" 

~ Sh lh~ 
by iteration and the results are 

_ 4 i~22  [p 
l(l~ 3re 2 {cl (~)- c3 (~)-�89 (~)-�89 (c~)} 

~ p 4 (  2i~3 ~4) 924p6 t ~2) 426p8 3 
+ 1 + 9~ ]3 + - - ~ - -  1 + ~  + ~ + O ( e  7) , 

T(2~ = l(~ + - -  

( 0 < p <  1), (51) 
64i0~27 p2 

675rc3 [1 + O(~Z)], (0< p< 1), (52) 

S~ ~ - 45zc + 0(~162 ' (1< p< oo), (53) 

Journal of Engineering Math., Vol. 4 (1970) 219-228 



Acoustic diffraction by a rigid annular disk 227 

and 

4ie325 { 1 } 
l{2m(aP) = 45rc2 p + O(c~2) , 

16ic~25 [ ~2 1 (  1 ~3 222) 622 
T(l~ = ~ - ~p + ~g + ~- + -~-  +--7p5 

4ic~ 3 25 
[p+ 

(1 < p < oo), (54) 

+O(c~3)], ( l < p < o o ) ,  (55) 

(0< p< 1), (56) 

4i~ 3 25 p 
Si~ : X[~ 45rc ~ --I- O(~9) , (0< p< 1), (57) 

We can find the behaviour of the diffracted field at infinity for this special case by appealing 
to the formula (34) with m set equal to zero : 

A (~ (0) = ia cos 0 ~ /  2 

- T~~ sin O)dv 
1 

flo T~~ J~(~v sin O)dv 

When we use the approximations of the functions S~~ / S(2 ~ T~{, ~ and T2(, ~ as given by the relations 
(57), (53), (55), and (52) respectively as well as the values of certain well known infinite integrals 
involving Bessel functions, there results 

I{ ~2 2i~3 2C~4 16ic~5 ( 1 4 ]~6 A(O)(O ) _ 2a cos 072 1 + + + + + 
3re 5- ~ ~ ~ 945 81rc2] 

0~2( 4~ 2 2i0~ 3 0 ~  4 ) Q 5(Z2~ t~4 
10 1 + 2 i -  + ~ + ~ sin2 0 + 1 + 27 / 280 sin4 0 

~6 Sin6 0 4- O(~7) } 1625 / 2~2 422 ~2 sin2 0 / ;  
15120 - ~  1 + - ~ - + ~ - + ~ + O ( ~  3) . (59) 

From the relations (35) and (59) we finally obtain an approximation to the plane wave 
scattering cross-section a: 

16a2c~4 [1 8~ 2 311e 4 (2612 4 )~6 
a - 2 7 ~  + 25- + ~ + \496125 8i-rc 

3225 12827 21442se2 1 
15~2 105n 2 1125~2 + 0(e 8) . (60) 

When 2--+0, the relations (59) and (60) reduce to the well known results for the rigid circular 
disk of radius a, [15], [16]. 

As regards the edge conditions, which were explained in section 4, we have verified that the 
solutionf(~ in this special case satisfies the formulae (40) and (41) as well as (37) and (38). 
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